
Herd of Containers

Saâd DIF
Database Engineer

Herd of Containers:
PostgreSQL in containers at
BlaBlaCar

pgDay Paris, Mar 15, 2018

Today’s
agenda

BlaBlaCar Overview

PostgreSQL usage at BlaBlaCar

Switching to a new implementation

BlaBlaCar
Overview

60 million
members

Founded
in 2006

1 million tonnes
less CO

2

In the past year

30 million mobile
app downloads
Iphone and Android

15 million
travellers

Currently in
22 countries
France, Spain, UK, Italy, Poland, Hungary, Croatia, Serbia, Romania,
Germany, Belgium, India, Mexico, The Netherlands, Luxembourg,
Portugal, Ukraine, Czech Republic, Slovakia, Russia, Brazil and Turkey.

Facts and Figures

Core Data Ecosystem

1 2 3

MySQL

Main Database
MariaDB 10.0+
Galera Cluster

Cassandra

Column Oriented
Distributed

Redis

In Memory
Key-Value
Optional durability

Core Data Ecosystem

4 5

ElasticSearch

JSON documents
FullText search
Distributed

PostgreSQL

ORDBMS
Extensibility
Stability

Why Containers ?

Resource allocation
Deployment Speed

On premise

Skills already there
Cost

Containers

Rkt

Why Rkt over Docker ?

CoreOS Container Linux

Linux Distrib
Simple & Secure

Only run containers

Fleet

Orchestration
By default with
CoreOS

Containers

GGN

Generate systemd
units

Dgr

Build and configure
App Container Images

Pods

Aggregate images in
one shared
environment

Containers

bare-metal servers

1 type of
hardware

3 disk profiles

fleet cluster

CoreOS

fleet etcd“Distributed init system”

Hardware

Container Registry

ggn

dgr

Service Codebase

rkt PODs

build

run

store

host

create pgsql

monitoring

nerve

pgsql-main1

php

nginx

nerve

monitoring

synapse

front1

synapse

nerve

zookeeper Service Discovery

Containers

Get rid of DNS internally
Adapt to change

Why ?

1

Service Discovery

Key-Value store
Reliable, Fast, Scalable

Why ? Zookeeper

21

Service Discovery

Go-Nerve
Health Checks
Ephemeral keys
Present on each pod

Why ? Zookeeper Report

2 31

Service Discovery

Go-Synapse
Watch Zookeeper
Update HAProxy configuration

Why ? Zookeeper Report Discover

2 3 41

Service Discovery

backend pod

client pod

Service Discovery

/database/node1

go-nerve does health checks
and reports to zookeeper in

service keys

node1

/database

Applications hit their local
haproxy to access backends

go-synapse watches zookeeper
service keys and reloads
haproxy if changes are

detected

HAProxy

go-nerve

Zookeeper

go-synapse

PostgreSQL usage
at BlaBlaCar

Prerequisite

PostGIS

Third-party applications

Spatial

Confidence

Home Made tools

Usage

Travel company

Corridoring

Point to Point

PostGIS

Rambouillet
Paris

Lyon

Le Creusot

3 685 1M
Rides passed by

Amiens last month

Number of

meeting points

50k
Rows reads per

minutes

Change!
Streaming
Replication

Manual
Interventions Not friendly

Painful failover
recovery

Operate

Target

Scale writes

Ease deployments

Maximum availability

Slaves

Failovers

Expandable resources

Possibilities

Postgres-XC (x2)

Postgres-XL

PgLogical

Bucardo

Slony

Londiste

Switching to a new implementation

BDR

Bi-Directional Replication

OpenSource project by 2ndQuadrant

Multi Master Asynchronous Replication

2 to 48 nodes

Optimal for Geo Distributed databases

BDR : The Confirmation

All nodes support reads and writes

No failovers

No other process / nodes needed

Partition tolerant

BDR : Caveats

Modified version of PostgreSQL 9.4
BDR 2.0 with PostgreSQL 9.6 for 2ndQuadrant support customers

DDL lock

Replication lag

Conflicts

Some statement not supported yet

Statement not replicated

Check

Init
Check if node have

entries in the
bdr_nodes table, if

yes : skip init

Implementation

Run

[~/build-tools/aci/aci-postgresql-bdr] $ tree
.
├── Jenkinsfile
├── aci-manifest.yml
├── attributes
│ ├── base.yml
│ └── postgresql.yml
├── files
│ └── tmp
│ └── postgresql
│ ├── environment
│ ├── pg_ctl.conf
│ ├── pg_ident.conf
│ └── start.conf
├── runlevels
│ ├── build
│ │ └── 00.install.sh
│ └── build-late
│ └── 00.clean.sh
└── templates
 └── dgr
 └── runlevels
 └── prestart-late
 ├── 00.init-instance.sh.tmpl
 └── 01.init-database.sh.tmpl

Implementation (init)

1 If no “donor” attributes : Init as new group

2

3

1

When the node have “donor” attributes :

Retrieve user definition on
donor (pg_dumpall -g)

Join BDR group

Create minimum objects if not
present

2

1 Part local node on donor

Delete entries on donor
(bdr_nodes and bdr_connections)

New fresh node Node already referenced but changed host or have lost his data

Pager Duty
Incidents Manager

Grafana
Beautiful Visualizations

Prometheus
Smart Monitoring

Exporter
Expose metrics

Monitoring and Alerting

Monitoring

Key principles:

Usage

Saturation

BDR exporter specifics
$ cat aci-prometheus-postgresql-exporter/templates/queries.tmpl.yaml

{{ if .use_bdr }}
pg_replication_bdr_count:
 query: "select (select count(*) from bdr.bdr_nodes) as bdr_nodes, (select count(*) from
bdr.bdr_connections) as bdr_connections;"
 metrics:
 - bdr_nodes:
 usage: "GAUGE"
 description: "Number of rows in the bdr_nodes table"
 - bdr_connections:
 usage: "GAUGE"
 description: "Number of rows in the bdr_connections table"
{{ end }}

pg_replication_count:
 query: "select (select count(*) from pg_stat_replication) as stat_repli, (select count(*) from
pg_replication_slots where active=true) as rep_slots;"
 metrics:
 - stat_repli:
 usage: "GAUGE"
 description: "Number of rows in the pg_stat_replication table"
 - rep_slots:
 usage: "GAUGE"
 description: "Number of rows in the pg_replication_slots table with the active status"

[...]

Template values for
BDR specifics

Extend metrics to all
PostgreSQL needs

Backup and Recovery

1 Retrieve dumpspg_dump

2 Alter structure
dump

3 Load structure and
data dump

Backup and Recovery

$ cat pod-mysql-backup/aci-backup/templates/opt/backup-main.tmpl.sh

function startbackup {
 begin_unixtime=$(date +%s)
 cat <<EOF | curl --data-binary @-
http://prometheus-gw:9091/metrics/job/backup_{{.env}}/target/$node/service/$service/type/{{.backup.type}}
 # HELP backup_begin_unixtime
 # TYPE backup_begin_unixtime counter
 backup_begin_unixtime $begin_unixtime
EOF
}

$ cat prometheus-rules/alert.postgresql.rules

Alert: There is less replication active than bdr nodes
ALERT BackupsTooOld

IF time() - backup_end_unixtime{exported_service=~".*postgresql.*"}) > (3600 * 24)

LABELS {
 severity="warning",
 stack="backups",
 team="data_infrastructure"
}

ANNOTATIONS {
 summary="Backup {{ $labels.type }} on {{ $labels.exported_service }}.{{ $labels.target }} is too
old.",
 dashboard=" https://grafana.blabla.car/dashboard/db/db-backups ",
}

Alerting

PromQL to find out
unhealthy services

Labeling for routing to
Slack & Pager Duty

Annotations with
templating to have clear
descriptions, URL to
dashboards and ops
runbooks

https://grafana.blabla.car/dashboard/db/db-backups

Feedback

Clearly satisfied with
availability

Reactive community

Know what your needs
are

Sanity checks

BDR 3.0 coming soon!

What’s next?

